Geometric mismatches within the concentric layers of rotavirus particles: a potential regulatory switch of viral particle transcription activity.
نویسندگان
چکیده
Rotaviruses are prototypical double-stranded RNA viruses whose triple-layered icosahedral capsid constitutes transcriptional machinery activated by the release of the external layer. To understand the molecular basis of this activation, we studied the structural interplay between the three capsid layers by electron cryo-microscopy and digital image processing. Two viral particles and four virus-like particles containing various combinations of inner (VP2)-, middle (VP6)-, and outer (VP7)-layer proteins were studied. We observed that the absence of the VP2 layer increases the particle diameter and changes the type of quasi-equivalent icosahedral symmetry, as described by the shift in triangulation number (T) of the VP6 layer (from T = 13 to T = 19 or more). By fitting X-ray models of VP6 into each reconstruction, we determined the quasi-atomic structures of the middle layers. These models showed that the VP6 lattices, i.e., curvature and trimer contacts, are characteristic of the particle composition. The different functional states of VP6 thus appear as being characterized by trimers having similar conformations but establishing different intertrimeric contacts. Remarkably, the external protein VP7 reorients the VP6 trimers located around the fivefold axes of the icosahedral capsid, thereby shrinking the channel through which mRNA exits the transcribing rotavirus particle. We conclude that the constraints arising from the different geometries imposed by the external and internal layers of the rotavirus capsid constitute a potential switch regulating the transcription activity of the viral particles.
منابع مشابه
Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells.
Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural p...
متن کاملFunction of rotavirus VP3 polypeptide in viral morphogenesis.
The phenotype of the rotavirus SA-11 mutant tsB carrying a thermosensitive mutation in gene 3, which encodes VP3, was characterized further from both infected cells and purified viral particles. The mutant phenotype was initially identified as negative for in vivo double- and single-stranded RNA synthesis. Our results show that the in vitro transcriptional properties of the tsB mutant at the re...
متن کاملTrypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins.
The rotavirus capsid is made up of three concentric protein layers. The outer layer, consisting of VP7 and VP4, is lost during virus entry into the host cell. Rotavirus field isolates can be adapted to high-titre growth in tissue culture by treatment with trypsin and by supplementing the culture medium with trypsin, which cleaves VP4 into two fragments, VP8* and VP5*. It is known that protease ...
متن کاملPhotoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase.
Rotavirus single-shelled particles have several enzymatic activities that are involved with the synthesis of capped mRNAs both in vivo and in vitro. Because single-shelled particles must be structurally intact to carry out transcription, it has proven to be difficult to identify the protein within such particles that possesses associated RNA polymerase activity. One approach for characterizing ...
متن کاملAnalysis of the kinetics of transcription and replication of the rotavirus genome by RNA interference.
Rotaviruses have a genome composed of 11 segments of double-stranded RNA (dsRNA) surrounded by three protein layers. The virus contains an RNA-dependent RNA polymerase that synthesizes RNA transcripts corresponding to all segments of the viral genome. These transcripts direct the synthesis of the viral proteins and also serve as templates for the synthesis of the complementary strand to form th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 6 شماره
صفحات -
تاریخ انتشار 2008